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Abstract:	 In this study, we model extreme rainfall to study the  high rainfall events 
in the province of South Sulawesi, Indonesia. We investigated the effect of the El 
Nino South Oscillation (ENSO), Indian Ocean Dipole Mode (IOD), and Mad‑
den–Julian Oscillation (MJO) on extreme rainfall events. We also assume that 
events in a location are affected by events in other nearby locations. Using rain‑
fall data from the province of South Sulawesi, the results showed that extreme 
rainfall events are related to IOD and MJO.
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1.	 Introduction

Extreme rainfall has a detrimental effect on human life and the environment. 
Extreme rainfall is that which rarely occurs in a location within a certain time [1]. 
There are two approaches used in determining extreme rainfall, namely Peak Over 
Threshold (POT) and Block Maxima (BM) [2]. In the POT approach, extreme rain‑
fall is expressed as rainfall that is greater than the  threshold value. Meanwhile, 
in the BM approach, extreme rainfall is expressed as the maximum value in a block 
of time.

Extreme rainfall can be divided into high extreme rainfall and low extreme rain‑
fall. High rainfall is associated with floods or landslides, while low rainfall is associ‑
ated with drought. Both types of extreme rainfall have adverse effects on human life 
and the environment. High extreme rainfall is defined as rainfall that is more than 
or equal to the 75th or 90th percentile [1, 3].

Extreme rainfall in Indonesia is strongly linked to the phenomena of global cli‑
mate change such as the El Nino South Oscillation (ENSO) [4], Indian Ocean Dipole 
Mode (IOD) [5], and Madden–Julian Oscillation (MJO)  [6]. This is because Indone‑
sia is one of the tropical regions between the Pacific Ocean and the Indian Ocean 
and the continents of Asia and Australia. This study aims to model the rate of ex‑
treme rainfall events related to the effects of climate change on 21 areas in the prov‑
ince of South Sulawesi in order to construct an early warning system.

The number of extreme rainfall events is a counting process that can be modeled 
into the Poisson model [7]. The Poisson processes with constant intensity are called 
Homogeneous Poisson processes, while Poisson processes with time‑dependent in‑
tensities are called non‑homogeneous Poisson processes (NHPP). The number of ex‑
treme rainfall events over time certainly varies because of climate change, in other 
words they are not constant. Thus, non‑homogeneous Poisson processes character‑
ized by time‑dependent intensity functions are realistic enough to be applied when 
modeling extreme rainfall phenomena.

The NHPP model has been applied in various disciplines, for example model‑
ing the arrival rate of containers in port operations and management [8], analyzing 
ozone behavior [9], analyzing rainfall occurrence [10], and modeling the frequency 
of extreme rainfall [11]. However, the studies that have been carried out are most‑
ly focused on the development of time‑dependent models, whilst extreme rainfall 
modeling involves data that is observed at different times and locations so that often 
observations in  a location are affected by observations in  other nearby locations. 
Thus, the addition of spatial effects to a model should be considered.

Some researchers add spatial effects to their research model to explain the pos‑
sible correlations and  sources of  variance that are not explained in  the  model. 
Huang  et  al.  [12] applied Conditional Auto‑Regressive  (CAR) to explain spatial 
correlation in modeling N2O emissions. Rusworth et  al.  [13] present a new mod‑
el for estimating the effects of air pollution on human health by using the spatial 
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effect of CAR on Spatio‑temporal model. Sharkey and Winter [14] add the spatial ef‑
fect of CAR distribution on the Generalized Pareto Distribution (GPD) parameter for 
precipitation modeling. Marco et al. [15] use CAR as a spatial effect in his research 
on modeling drug crime. The addition of the spatial effect of CAR on the models 
of these studies was constructed using the Bayesian hierarchy framework. A Bayes‑
ian hierarchy is considered a flexible framework and allows the incorporation of var‑
ious sources of uncertainty [14].

2.	 Data

The data used in  this study are daily rainfall data at 60  locations in 21 areas 
in the province of South Sulawesi obtained from the Global Satellite Mapping of Pre‑
cipitation or GSMaP (ftp://hokusai.eorc.jaxa.jp). This research analyses extreme rain‑
fall events for 8 years from 2009 to 2016. Three important climatic factors: the El Nino 
Southern Oscillation  (ENSO), the  Indian Ocean Dipole  (IOD), and  the Madden– 
Julian Oscillation (MJO) are considered in this study to understand their effects on 
extreme rainfall occurrence. ENSO and IOD data were obtained from the National 
Oceanic and Atmospheric (NOAA) and MJO data from the Bureau of Meteorology. 
Figure 1 shows the districts in the province of South Sulawesi, Indonesia and rainfall 
station locations.

Fig. 1. Map of rainfall station locations in the province of South Sulawesi

ftp://hokusai.eorc.jaxa.jp
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3.	 Methodology

The steps in this study are as follows: Collecting data, determine extreme rainfall 
data by calculating the 75th percentile value in a day’s rainfall, counting the number 
of days with rainfall more than or equal to the 75th percentile (D75) every month, 
identify spatial correlations with Moran’s I test, construct NHPP models for the num‑
ber of extreme rainfall events D75 with three independent variables with the addition 
of spatial effects of CAR in the Bayesian Hierarchy framework, parameter estimation 
using WinBugs Version 3.0.2 software, and interpretation of research results.

4.	 Extreme Rainfall Modeling

Modeling the rate of extreme rainfall events is carried out within the Hierarchi‑
cal Bayesian framework. Non‑homogeneous Poisson modeling with spatial effects 
using the Bayesian hierarchy method consists of three steps, namely the data mod‑
eling step, the process modeling step, and the prior distribution selection step. The 
hierarchical modeling structure is described as follows:

Let yti denotes the number of extreme rainfall day in time t, t = 1, 2, ..., T and area i, 
i = 1, 2, ..., n. yti is Poisson distribution data, which can be shown through the Kol‑
mogorov–Smirnov test. yti is modeled as Poisson distribution data with the parame‑
ter λti, then the data modeling step can be written as follows:

	 yti ~Poisson(λti),

where λti depends on the time t and the location i of the event with the likelihood 
function as follows:
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In process modeling, it is assumed that the rate of extreme rainfall events λti is 
based on spatial processes since neighboring locations have more similar character‑
istics than locations farther away, so that ui as spatial random effects are added to 
the model. Also, three climate covariates that are thought to affect extreme rainfall 
events: MJO, IOD, and ENSO are also included in the model thus the model can be 
written as follows:

	 0 1 2 3log ti ti ti ti iMJO NINO IOD uλ = β +β +β +β + ,

where  β0 is global intercept, β1,  β2,  β3  are regression coefficients, MJOti, NINOti, 
IODti  are predictors at time  t in  location  i and  ui are spatial random components 
at location  i modeled with priors conditional autoregressive  (CAR) distribution. 



Spatio‑Temporal Model of Extreme Rainfall Data in the Province of South Sulawesi...	 9

The use of  a log‑link in  parameter estimation aims to ensure the  parameter val‑
ue is a non‑negative number. Banerjee et al. [16] in Sharkey and Winter [14] write 
the CAR model with conditional prior for ui as:
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where ui is spatial random effect, τ2 is the variance, 
1

n
i ijj

w w+ =
= ∑  with wi+ is the num‑

ber of neighbors of cell location i, wij is spatial weight on the spatial weight matrix W. 
A real n×n matrix defining spatial proximity between cells i and j with wij = 1 if loca‑
tion i and j are adjacent and wij = 0 otherwise.

The last step in  hierarchical modeling is defining priors and  assumed that 
the  parameters at each step of  the  model are independent. Assuming there is no 
prior knowledge of  one of  the  parameters in  the  model, it is chosen to set non
‑informative prior for βk  =  (β0, β1, β2, β3) with consideration of βk  ~  N(μ, φ) where 
hyperprior μ and φ are normally distributed with mean‑centered on zero and a large 
and fixed variant [14]. The definition of the prior is described as follows: Parame‑
ter βk = {β0, β1, β2, β3} are priors with Normal distribution,  βk ~ N(μ, φ), μ ~ N(0, 100), 
φ ~ N(0, 100), τ ~ Gamma(0.5, 0.0005).

Proportionally, the posterior distribution is the product of the likelihood func‑
tion with prior. The parameters that will be estimated are written as:

	 0 1 2 3{ , , , , }iu= β β β βθ

with hyperparameter:

	 { , , }= µ ϕ τψ ,

thus the likelihood function in this model is:

	 0 1 2 3 0 1 2 3
1 1

( | , , , , , , , ) ( | , , , , , , , )
T n

i ti i
t i

f u f y u
= =

β β β β µ ϕ τ = β β β β µ ϕ τ∏∏y .

Therefore, the posterior distribution can be written as follows.

	 0 1 2 3 0 1

2 3

( , | ) ( | , ) ( | ) ( ),
( , | ) ( | , , , , , , , ) ( | , ) ( | , )

( | , ) ( | , ) ( | ) ( ) ( ).
ti i

i

f f f f
f f y u f f

f f f u f f

= × ×
= β β β β µ ϕ τ × β µ ϕ × β µ ϕ ×
× β µ ϕ × β µ ϕ × τ × ϕ × τ

y y
y

θ ψ θ ψ θ ψ ψ
θ ψ

Model parameters are estimated by means of the Bayes method using the Mar‑
kov Chain Monte Carlo (MCMC) algorithm with WinBugs version 3.0.2 software.
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5.	 Result

The parameter estimation results with the  Bayesian method are good when 
the estimated parameters converge. The convergence of the estimation results was 
observed by the visual inspection of trace samples for each chain, density, history, 
autocorrelation, and convergence statistics of Gelman‑Rubin. The estimation results 
for the high extreme rainfall rate models are obtained by carrying out an MCMC 
run of 10.000 iterations with 1.000 burn‑in period. Trace sample plots for each chain, 
density, history, autocorrelation, and convergence statistics of Gelman–Rubin show 
that MCMC is mixing well.

The estimation results for the  number of  extreme rainfall days  (D75) model 
are presented in Table 1. The first column in each Table is the covariate parameter 
(factors) that are thought to affect extreme rainfall events rate, the  mean column 
shows the magnitude of the model parameter value, and for the next three columns, 
namely val2.5% (credible lower limit interval), median, and val97.5% (upper limit 
of the credible interval) is the estimated value on the 95% credible interval. Covari‑
ates with values at credible intervals that do not contain zero value are considered to 
significantly affect the rate of the number of extreme rainfall days.

Table 1. Parameter posterior estimation results for the rate of D75 model

Parameter Mean Standard 
deviation Val2.5% Median Val97.5%

β0 0.6365 0.0563 0.5274 0.6368 0.7469

β1 0.1864 0.0566 0.0749 0.1863 0.2972

β2 −0.0005 0.0181 −0.0367 −0.0007 0.0349

β3 −0.7952 0.0645 −0.9203 −0.7945 −0.6697

τ 11.9300 5.5690 4.5500 10.7900 25.7800

Based on the estimation results in Table 1, what is stated to affect the rate of D75 
in South Sulawesi with a confidence interval of 95% is MJO and IOD. This can be 
seen from the results of estimating the parameters β1 and  β3 whose values do not 
contain zero on the  credible interval. In contrast to ENSO, since it contains zero 
on the credible interval on the results of the β2 parameter estpmation, it stated that 
ENSO did not show a significant result for D75 in the province of South Sulawesi 
for a period of 2009 to 2016. Meanwhile, the CAR parameter (τ) shows that there is 
a spatial dependency between neighboring locations of events.

The rate of the number of extreme rainfall days in the province of South Sulawe‑
si can be modeled as follows:

	 75log 0.6365 0.1864 0.7952D
ti ti tiMJO IODλ = + − .
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From the  estimation results for D75 rates, it stated that for D75 behavior to‑
wards the  climate covariate. The MJO and  the IOD significantly influence while 
ENSO does not affect significantly. The CAR parameter (τ) significantly affects both 
the MJO and the IOD. It means that in the case of extreme rainfall events there are 
spatial dependencies in neighboring locations.

The description of  D75 in  the  province of  South Sulawesi (see Fig.  2) shows 
a pattern that varies over time. The presence of  spatial dependencies occurred 
in the province of South Sulawesi. Several locations have similar colors.

Fig. 2. Map of the high extreme rainfall rate in the period 2009 to 2016: 
a) January, b) February, c) March, d) April, e) May, f) June, g) July,  

h) August, i) September, j) October, k) November, l) December

a) b) c) d)

e) f) g) h)

i) j) k) l)
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The rate of D75 in the province of South Sulawesi in the period 2009 to 2016 
ranges from one to six days (see Fig. 2). The maximum rate of extreme rainfall days 
in six days and this occurs in January and April, with the rate of D75 in one‑day 
for August and September. The variation in  the rate of occurrence is certainly re‑
lated to the  geography and  topography at the  scene. Although globally the  rate 
of extreme rainfall events is significantly affected by MJO and IOD, extreme rain‑
fall events in several locations in South Sulawesi are influenced by the local nature 
of the location.

6.	 Discussion

The modeling of extreme rainfall events rate in this study was carried out by 
considering three climate covariates that were thought to affect extreme rainfall 
events: ENSO [4], IOD [5], and MJO [6]. Climate change that changes from time to 
time causes the incidence of extreme rainfall is not constant or changes over time. In 
that case, the NHPP is quite realistic to be used to model the rate of D75 that depend 
on changes in time.

Globally, 21 areas of observation in the province of South Sulawesi have spatial 
correlations with the location of their neighbors. This can be seen from the Moran 
index value I = 0.2990. Thus the addition of spatial effects to rainfall modeling was 
carried out to explain the spatial random effects as carried out by [14]. Spatial depen‑
dence is done by selecting prior CAR on spatial random effects. In this study, prior 
CAR in the NHPP model is used to model high extreme rainfall events in the prov‑
ince of South Sulawesi.

The effect of  the global climate on the rate of  the number of extreme rainfall 
days is shown in Table 1. Both MJO and IOD showed a significant effect on the num‑
ber of  extreme rainfall days in  the  province of  South Sulawesi. This can be seen 
from the results of estimating the parameters β1 and β3 whose values do not contain 
zero on the credible interval. This is in contrast to ENSO, because it contains zero 
on the credible interval on the results of the β2 parameter estimation. ENSO has no 
significant effect on the rate of D75 in the province of South Sulawesi for the period 
of 2009 to 2016.

In general, ENSO has a varied influence on rainfall intensity and the number 
of rainy days both spatially and temporally. According to Deni et al. [17], ENSO has 
a major effect on rainfall anomalies in Indonesia. In the east of Indonesia, ENSO was 
correlated with rainfall in that location [18]. This study shows that the rate of D75 
in the province of South Sulawesi for a period of 2009 to 2016 is only significantly in‑
fluenced by MJO and IOD, while ENSO does not have a significant effect. It can hap‑
pen when ENSO merges concurrently with MJO or IOD or even both. Jones et al. [19] 
stated that MJO in  the active phase led to increased extreme rainfall, where MJO 
generally tends to be most active during the ENSO neutral phase and experiences 



Spatio‑Temporal Model of Extreme Rainfall Data in the Province of South Sulawesi...	 13

a resting phase when ENSO strengthens. Also, IOD reduces the  impact of ENSO, 
while merging at the  same time  [20]. MJO is stronger during negative IOD com‑
pared with positive IOD [21]. When IOD is negative, MJO increases the probability 
of  the occurrence of high extreme rainfall. When IOD is positive, the modulation 
of the wet days by MJO becomes weaker.

7.	 Conclusion

This study shows that for the period of 2009 to 2016, IOD and MJO are asso‑
ciated with the rate of  the number of extreme rainfall days. When there is a neg‑
ative IOD, the incidence of the number of extreme rainfall days tends to increase. 
MJO in the active phase affects the rate of high extreme rainfall events at the location 
it passes. The ENSO does not have a significant effect on the  rate of  D75  events. 
The random effect of spatial shows a significant effect, which means that the rate 
of the number of extreme rainfall days in the area of the province of South Sulawesi 
affects the rate of occurrence in neighboring locations.
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An Analysis of Total Water Storage Changes 
Obtained from GRACE FO Observations 
over the Venezia Islands Area 
Supported with Additional Data

Abstract:	 The Venezia Islands are a very special area from the hydrological point of view 
due to its water mass changes. Regular floods results in the need for the regular 
monitoring of water mass changes. For this purpose, a Gravity Recovery and 
Climate Experiment mission (GRACE) can be used as a source of data.

	 The aim of the paper is to compare the latest results of the new GRACE FO 
observations. The comparisons were carried out all over Venezia Island using 
the L3 level, RL06 release data obtained with spherical harmonics degree and 
order extension of up to 120, by the three most important computational cen‑
tres: JPL, GFZ, CSR. Results are compared to an average month values of pre‑
cipitation and evapotranspiration and tide gauge data in the nearby area.

	 Based on the research, no dependence between TWS and evapotranspiration 
and evapotranspiration change were found
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1.	 Introduction

The research focuses on the analysis of the total water storage determined on the 
basis of the new GRACE FO (Gravity Recovery and Climate Experiment Follow‑On) 
observation and comparing it with precipitation and evapotranspiration from the 
MERRA 2 model (The Second Modern‑Era Retrospective analysis for Research and 
Applications), and then with tide gauge data. The research undertaken in the paper 
is to look for a possible relation between climatic parameters and TWS (total water 
storage). The research was carried out for the time span June 2018 – December 2019 
for the area of the Venezia Islands. Different ways of processing were taken into 
consideration (traditional filtering and the newest mascon‑solution). Having ana‑
lysed and processed the values of monthly precipitation and evapotranspiration, an 
atmospheric budget was also estimated.

In the study TWS is analysed. Total water storage (TWS) is the sum of all wa‑
ter mass variations on land, atmosphere and in the soil; so, the sum of snow water 
equivalent, surface water, soil moisture and groundwater  [1,  2]. TWS was and is 
used in many applications, like computing TWS for big river basins, like e.g.  the 
Amazon or Mekong  [3], for the improvement of hydrological models  [4], correct 
assimilation model outputs [5], computing water budget in combination with other 
products [6], estimating groundwater storage [1, 7], finding TWS relationship with 
climate variability and human activities [8].

Precipitation (P) can be described as water droplets falling to the surface and 
can be in different forms: rain, sleet, snow and hail. It is usually measured as the 
rain volume which falls to the Earth per area unit per time unit. The rainfall rate 
can be used in many applications, such as water and energy cycle assessment, envi‑
ronmental and agricultural issues, weather forecasting, monitoring climate change, 
hydrological applications and natural disaster management [9, 10].

Evapotranspiration (EV) is the total value of evaporation and plant transpira‑
tion. It can be understood as water movement to the air from different sources on 
Earth (like soil, rivers, oceans, plants, etc.). In atmospheric models, the rate of evap‑
otranspiration is presented as the volume of water lost from a surface unit per time 
unit. Evapotranspiration is used in applications such as water and atmospheric cy‑
cles evaluation, as well as weather and climate prediction models [11, 12].

The aim of the GRACE  FO mission (Gravity Recovery and Climate Experi‑
ment Follow On) is to track the Earth’s water movement in a global sense. It start‑
ed on May 2018. GRACE satellites move on a quasi‑polar orbit (89° inclination) at 
an altitude of about 500  km. This allows for a global coverage of continental sur‑
faces [2]. Observations consist of monitoring changes in the following: ice and gla‑
ciers, groundwater, the amount of water in basins, and changes in sea level. Such 
measurements provide a unique, precise, and global view of the Earth’s climate. 
The on‑ground GRACE Science Data System releases monthly solutions by three 
processing centres that use their own specific algorithm to obtain Level  2 data: 
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GFZ, CSR and JPL. Data is provided on three levels, with the first level being raw 
data. The typical user usually analyses and process data on the second level, and in 
a somewhat different way for every centre [13].

For the purpose of obtaining the vales of monthly changes of precipitation and 
evapotranspiration data, MERRA 2 model outputs were obtained. The Modern‑Era 
Retrospective analysis for Research and Applications (MERR2) is a NASA (National 
Aeronautics and Space Administration) atmospheric reanalysis model, determined 
for global, accurate spatial and time resolution releases of meteorological units. Out‑
puts are based on satellite and terrestrial observations combined with GCM (Gen‑
eral Circulation Model) simulations [14]. The data is available in grid form, at the 
0.625° longitude × 0.5° latitude resolution [15].

Tide gauges were obtained from a website of the Permanent Service for Mean 
Sea Level (PSMSL) [16], a service providing global data of mean sea level changes.

2.	 Case Study – Venezia

The study focuses on the Venezia Islands, one of the most interesting hydro‑
logical systems in southern Europe due to its island character and interesting hy‑
drological situation. The analysed basin drains 60,500 km². This study analyses wa‑
ter mass variations for both the land and sea area.

Venezia Islands are the biggest lagoon in the area of the Mediterranean (Figs. 1, 2).

Fig. 1. Research location
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The area can be characterized as a microtidal regime. According to the atmo‑
spheric conditions, especially the occurrence of the sirocco (strong winds from 
the south) and storms caused by a low atmospheric pressure should be empha‑
sized. Such conditions influence the significant increase of the maximum water 
level [17–19].

3.	 Methods

In the paper a total water storage was determined and then compared to mete‑
orological and tide gauge data. Thanks to the GRACE mission, we are able monitor 
processes that involve mass redistribution [20]. Because of this fact the total water 
storage changes from GRACE can then become a good basis for water and energetic 
budget analysis.

3.1.	 Total Water Storage Determination Using Spherical Harmonics
In the paper two ways of determining TWA are presented. The first is to com‑

pute TWS from the spherical harmonics coefficient extension with a degree and or‑
der of 120. As the raw data suffers from data leakage and needs a destriping process, 
Gauss filtering of a radius 300 km was introduced.

TWS was determined with the formula [21]:
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where: θ  and  φ are colatitude and longitude, a  is the radius of the Earth equal 
6 378 136.300 m, ρave is the average density of the Earth equal 5517 kg/m3, ρwater is the 
density of water equal 1000 kg/m3, kl is the load Love number, and  lmP  is the fully 
normalized associated Legendre functions.

Fig. 2. GRACe grids used in the computation
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To define the isotropic Gauss a radius  r, and consists of the application of 
a weight, Wlm, added to the elements of the spherical harmonics coefficient  Slm 
and Clm. So, with a filtering weight, TWS changes estimated as [22, 23]:
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The radius r of the Gauss filter only defines the filter approximately, its purpose 
is to fix the spatial resolution of the filtered grids.

3.2.	 Total Water Storage Determination Using Mascons
On the other hand, mascon processing of GRACE observations was used. Mas‑

cons (mass concentrations blocks) are some kind of mass concentration beneath the 
surface of a planet and are the cause of changes in the gravitational field. Mascon 
parameters are used to obtain geographical corrections for the mean global gravi‑
ty field. Each of the parameters represents the excess or deficit of surface mass for 
a specific area and a designated time period. The excess or deficit of surface mass 
determined for a specific area is represented as a uniform layer of mass, which is 
expressed in meters of total water storage in that region. In other words, mascons 
represent the distribution of surface mass as spatial and temporal functions [24].

3.3.	 Steps of Research
All in all, based on GRACE observations, TWS variations are computed using 

two techniques (Fig. 3).

Fig. 3. Flowchart of GRACE observations processing
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Next, TWS changes are analysed in terms of looking for the causes of changes. 
Precipitation and evapotranspiration from the satellite model, and sea level chang‑
es due to tide gauges will be taken into account. Due to the marine climatic zone, 
the relatively flat surface (a small part of the researched area is land, which can be 
classified as flat), canopy and surface topography influence will not be considered.

4.	 Results and Discussion

From a website  [25] the observations concerning total water storage were 
downloaded. Three types of postprocessing were taken into calculation – Release 
Note 06 computed in the computation centres JPL – Jet Propulsion Laboratory [26] 
GFZ – German Research Centre for Geosciences (GeoForschungsZentrum) [27] and 
CSR – Center for Space Research at University of Texas, Austin [28]. Gridded surface 
TWS variations over the Venezia Island area were derived from spherical harmon‑
ic coefficients that represent the Earth’s mean gravity field estimations during the 
specified one‑month timespan. Obtained results are a good approximation of the 
full magnitude of land hydrology and land ice. For the purpose of raw data filtering, 
a Gauss filter with a 300 km radius was used [29].

GRACE data with a spatial resolution of approximately 100  km is character‑
ized with a significant noise ratio (the noise increases with degrees of the spherical 
harmonic decomposition striving for a higher spatial resolution). The aim of the 
three mentioned centres is to reduce noise by applying smoothing filters. In fact, 
smoothing filters cause the smoothing of the amplitude of the water mass variations. 
Moreover, TWS also suffers leakage effects [3, 30]. D. Long et al. [31] made research 
on 60  river basins and noticed more disparities in TWS trend for medium basins 
that are less than 200,000 km2. Based on the research it can be said that more differ‑
ences in TWS are more likely to be noticed for medium and small watersheds. The 
research area covers a small zone, so three solutions were considered (Fig. 4).

Correlation coefficients were computed between all the time series, the results 
are as follows:

	– GFZ/JPL: 0.972,
	– GFZ/CSR: 0.975,
	– JPL/CSR: 0.983.

Analysing the values of TWS over the Venezia Islands led the authors to no‑
tice that the smallest values of TWS change were achieved in late‑autumn period 
(−13 cm in October 2018 and −15 cm in October 2019). In summer, the TWS change is 
almost zero (0.6 cm in June 2019). Analysing old TWS data measured by the GRACE 
mission from 2002 to 2017 let us notice that such a tendency is stable over the years, 
with values of about 14 cm in autumn and about 0 cm in the beginning of the sum‑
mer [32].
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According to [13], it is recommended to use a simple arithmetic mean of the JPL, 
CSR, GFZ fields. Such an approach seems to be the most effective in cases of reducing 
the noise in the solutions. The differences between solutions of JPL, GFZ, and CSR 
releases are rather small, and are dependent on the error bounds of the GRACE solu‑
tion itself [13]. Because the correlation coefficient is more than 0.9, time series filtered 
with Gauss 300 km were averaged. In the next step of the research, it was checked 
if the averaged filtered solutions correspond to the newest mascons solutions.

In comparison to the filtering solution, the aim of mascons is to parameterize 
the Earth’s gravity field with mass concentration functions. Such a solution causes 
the decrease of leakage  [33]. In the paper, the mascon solution computed by the 
JPL centre (0.5°× 0.5° grid, RL06 M.MSCNv01 dataset with Coastal Resolution Im‑
provement Filtering [34]) was used (Fig. 5).

The correlation coefficient between the mascon solution and the average time 
series of filtered TWS values is very high (0.995). It can be said that for the area of the 
Venezia Islands, both solutions can be used interchangeably.

Using the web‑service  [35], two sets of MERRA  2 outputs were obtained in 
a one‑month time resolution: precipitation and evapotranspiration. The data was av‑
eraged for every month over the researched area. Analysing the evapotranspiration 
time series, a smooth regular line is noticed. The Venezia Islands have a moderately 
warm climate, and annual amplitudes of the temperature are rather small. Figure 6 
reflects the climate. In summer, when more sun radiation and longer days are noted, 
values of evapotranspiration are on the level from 3.5 to 5 e–5 kg/m2/s. In winter 
months, evapotranspiration is about 1.5 e–5 kg/m2/s. Precipitation rate over year is 

Fig. 4. Total water storage changes – time series for GFZ, JPL and CSR solution  
filtered with Gauss, 300 km radius, for the whole researched area of the Venezia Islands, 

unit: metres
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more irregular, during the analysed period the highest value is noticed in Novem‑
ber 2019 (10 e–5 kg/m2/s). It needs to be mentioned that this was the time of a very 
dangerous flood that occurred in Venezia Lagoon (caused by an unexpectedly huge 
tide) while a year before, in November  2018, the value of precipitation was only 
4.2 e–5 kg/m2/s.

Fig. 5. Total water storage changes – time series for averaged GFZ, JPL and CSR solution 
filtered with Gauss, 300 km radius, and time series for mascon solution, for the whole 

researched area of the Venezia Islands, unit: metres

Fig. 6. Precipitation and evapotranspiration outputs from the MERRA 2 model,  
for the entire research area of the Venezia Islands, unit: kg/m2/s
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The values of precipitation and evapotranspiration were recomputed into me‑
tres for the purpose of performing a comparison between the TWS and MERRA 2 
outputs (Fig. 7). It can be said that there is no relation between evapotranspiration 
and TWS as the value and amplitude of an evapotranspiration change is insignifi‑
cantly small in comparison with TWS. Analysing the relation between precipitation 
change and TWS change, much higher values are noticed according to precipita‑
tion. The precipitation rate seems to have very little influence on TWS variations. 
As Venezia is characterized with an island geographical location, it seems that tides 
have such a huge influence that determines most of the monthly TWS values. No 
significant linear relationship has also been demonstrated in Figures 8 and 9, where 
a scatterplot of correlation between TWS and precipitation, together with TWS and 
evapotranspiration, are presented.

Fig. 7. Comparison between average total water storage changes, precipitation  
and evapotranspiration, for the whole researched area of the Venezia Islands, unit: metres

Fig. 8. Relation between TWS and precipitation, for the area of the Venezia Islands, unit: metres
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In the near surroundings of Venezia, four mareograph stations are to be found:
	– VENEZIA ARSENALE (45.417; 12.350),
	– VENEZIA II (45.418; 12.427),
	– VENEZIA – S.STEFANO (45.417; 12.333),
	– VENEZIA – PUNTA DELLA SALUTE (45.433; 12.333).

For the purpose of the research of tide gauge changes, a mareograph from 
VENEZIA  II was taken, having the most up to date data. The comparison be‑
tween TWS and mean sea level changes is presented in Figure 10.

Fig. 9. Relation between TWS and evapotranspiration, for the area of the Venezia Islands, 
unit: metres

Fig. 10. Relation between TWS and tide gauges changes,  
for the whole researched area of the Venezia Islands, unit: metres
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This can prove that any change of mean sea level change is quickly reflected in 
TWS changes. Values from tide gauge measurements are higher that TWS changes, 
bringing the conclusion that some big run off is expected in a region up to about 
0.25 metres change) yet it can be noticed that phases of changes are the same. A rise 
of both TWS and tide gauge data change was observed for the period Decem‑
ber 2018 – June 2019, then during a period July 2019 – November 2019 negative val‑
ues are observed. It would be interesting to extend the time series of measurement 
for the purpose of looking for seasonal repeat.

The last part of the research was to compute the availability of fresh water in 
the area. Having the values of precipitation and evapotranspiration, an atmospheric 
budget over the region was also computed (Fig. 11). Freshwater availability moni‑
toring and understanding is of immense importance, especially in assessing the so‑
cial, economic, and environmental impacts of climate change. Estimation of the ap‑
proximate freshwater availability can be computed as the difference (P–E) between 
precipitation (P) and evapotranspiration (E). Such an approach is widely practiced 
because of its simplicity [36–38].

 

‐0,2

‐0,15

‐0,1

‐0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

20
18

,0
8

20
18

,0
9

20
18

,1
0

20
18

,1
1

20
18

,1
2

20
19

,0
1

20
19

,0
2

20
19

,0
3

20
19

,0
4

20
19

,0
5

20
19

,0
6

20
19

,0
7

20
19

,0
8

20
19

,0
9

20
19

,1
0

20
19

,1
1

20
19

,1
2

month tide gauges changes [m] TWS changes

Fig. 11. Atmospheric budget for the area of the Venezia Islands, unit: metres

In the area of the Venezia Islands, an atmospheric budget in half of the re‑
searched months gained a so‑called normal value (approx. 0). This means that pre‑
cipitation and evapotranspiration chance is balanced. The only below normal value 
was noticed in June 2019 (−4 cm). The highest values of the atmospheric budget, an 
above normal budget, were noticed in November 2019 (9 cm), May 2019 (6.5 cm) and 
in October 2018 (4 cm).
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5.	 Conclusions

The aim of the paper was to check for dependencies between total water storage 
change and precipitation and evapotranspiration change over the area of the Vene‑
zia Islands. Based on the research, a few conclusions were drawn.

1.	 No dependence between TWS and evapotranspiration and evapotranspira‑
tion change was found. The major impact on TWS change must be by the 
influence of tides.

2.	 There is a high correlation between all analysed filtered solutions (GFZ, JPL 
and  CSR) and between averaged filtered solution and the newest mas‑
con solution over the Venezia Islands. Both solutions can be used inter
changeably.

3.	 A similar phase of changes can be observed when comparing TWS changes 
and tide gauge data changes.

4.	 Atmospheric budget analyses reveal normal or above normal values which 
is a good prognostic of the availability of fresh water.
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